《二次函数》教学反思

时间:2024-07-19 07:44:13 教学反思 我要投稿

《二次函数》教学反思【范例15篇】

  身为一名刚到岗的人民教师,我们要有一流的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,如何把教学反思做到重点突出呢?以下是小编为大家收集的《二次函数》教学反思,仅供参考,希望能够帮助到大家。

《二次函数》教学反思【范例15篇】

《二次函数》教学反思1

  教学中,对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。分三步来展开这部分的内容。第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的.情形。第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系。第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系。

  除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型。教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个系统的整体。教学中应当注意贯彻教科书的这个意图,是学生经历函数模型应用的完整。

《二次函数》教学反思2

  新人教版九年级数学第二十二章《二次函数》是学生学习了正比例函数、一次函数进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数单元教学反思。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。

  二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。

  下面是我通过本单元对《二次函数》教学内容的分类后的几点反思:

  “二次函数概念”:

  关于“二次函数概念”教学中我的成功之处是:教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。

  不足之处表现在:少数学生不能从函数本身的实际意义去正确判定一个函数是否是二次函数。

  “二次函数的图像及性质”:

  关于“二次函数的图象和性质”在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。通过引导学生在坐标纸上画出二次函数y=ax的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。

  在性质的探究中我让学生观察图像自主探讨当a>0时函数y=ax的性质。当a

  不足之处表现在:

  1、课堂上时间安排欠合理。学生说的多,动手不够。

  2、学生作图速度慢。简单的列表、描点、连线。学生做起来就比较困难,作图中单位长度不准确,描点不准确,图象中的平滑曲线不够平滑。

  3、合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,学生的创新能力的培养不够。

  4、少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。

  “求二次函数解析式”:

  关于“求二次函数解析式”教学中,我通过创设有关待定系数法的问题情境出发,导入求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。然后我通过变式,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快理解了用顶点式求的二次函数解析式的`方法。再通过变式我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式求二次函数解析式的方法。在整个教学中,环环相扣,充分调动了学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。

  不足之处表现在:

  1、一般式的应用中学生的难度在于解三元一次方程组上。

  2、学生对求顶点式和交点式的二次函数解析式方法欠灵活。

  3、变式训练的习题太少导致学生掌握知识不够牢固。

  “实际问题与二次函数”:

  关于“实际问题与二次函数”教学中我通过引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式的表达形式,以及二次函数的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题1,即最大面积问题。教材中的三个探究我分别安排了三节课进行分类教学。我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。教学每一类实际问题,我都搜集了大量的实例,所以教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以这部分内容学生掌握的比较好。

  不足之处表现在:

  1、“探究1”中少数学生对于用配方法或公式法求函数的极值容易出错。

  2、少数学生不会分析题意,不能正确列式求出二次函数的解析式。

  3、“探究2”少数学生对最大利润问题中的涨价和定价理解有偏差。

  4、“探究3”少数学生不会灵活建立直角坐标系把实际问题转化为数学问题。

  以上就是我在教学本单元的感受、体会。因为二次函数知识是函数中的重点也是中考的重点考点,所以针对教学中的不足和学生暴露出的问题,在期末复习中还要制定详实有效的复习计划,通过精选习题再进行最后的强化训练。

《二次函数》教学反思3

  本节课的学习内容是在前面学过一次函数、反比例函数的图像和性质的基础上运用已有的学习经验探索新知识。《二次函数的图像与性质(一)》是二次函数性质研究的第一步,为后面研究较为复杂的函数类型作了必要的铺垫,具有承上启下的作用。

  讲课中首先一起回顾一次函数与反比例函数的图像与性质,然后让学生动手在坐标系中作二次函数y=x2和y=-x2的图象,从感性上结识抛物线.再后又对两个特殊的二次函数的图象和性质进行了归纳和总结,从理性上再次结识抛物线。利用几何画板揭示了两个抛物线之间的联系,使本节课的知识得到了升华。

  成功之处:

  1.课前的引课很精彩,几句简短的语言使学生感受数学就在我们的身边,并激起学生学习数学的兴趣.

  2.对二次函数图象的作图,通过学生作品的展示、思考、讨论、讲评起到指导全体学生的作用.作图后让学生反思自己的作图过程,加深学生对作图的理解,规范作图,同时培养学生严谨治学的精神。

  3.二次函数的图象和性质掌握起来有一定的难度,因此我设计一系列问题串,让学生观察图象回答,以突出重点分散难点.同时借助课件的动态展示能帮助学生更形象地理解和掌握二次函数的图象和性质,也为今后探讨其他类函数的性质提供思路.

  4.在教学中注重多种学习信息的捕捉,引导学生从图与形,表达式、表格、图像等多角度地去分析理解数学知识,使学生对抛物线有一个丰满的认识。

  5.几何画板很好的展示了两个函数之间的关系,动态的演示有助于理解难点,是这节课的亮点。

  不足之处:

  1.在学生作图教学时,课堂上有一部分学生没有进行完,此处给学生的时间少一些.

  2.作图展示时只说明了有问题的部分而没有展示优秀的`部分,无法使学生获得成功的喜悦。

  3.在探索二次函数的图象和性质的活动中,没有让学生有更多的思考交流和评价的过程,限制了学生思维的发展.

  通过这节课,我认为要使课堂真正成为学生展示自我的舞台,还学生课堂的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己的舞台,充分利用合作交流的形式,使教师帮助学生不断积累学习经验,完善学习的过程,最终使“要我学”变为“我要学”。

《二次函数》教学反思4

  今天开始复习二次函数,以往在讲练习课的时候,学生总感觉自己已经懂了,上课的效率很差。现在如果还是和原来那样复习,效率肯定不会好。以往采取的方式就是布置给学生大量的作业,然后再进行适当的讲评。可是总觉的那种方式也不理想,一方面浪费时间,另一方面学生也不可能高质量完成。今天复习的时候给自己定了一个复习计划。

  对于二次函数总体复习的时间定为三个课时,在课前先布置一张练习卷,批改后找到学生错误的地方,进行分析,为第一节课作好准备。从学生完成的情况来看,二次函数基本的知识点掌握的还不错,但是大部分学生简答不够认真,只有最后的结果,没有具体的过程。对于二次函数的综合运用还存在一定问题。同时还有求函数解析式,对于顶点式,和一般式也有一定的问题。利用二次函数解决实际问题中求最大或者最小值的题目,书写的格式还是需要强调。

  一、本章知识点的'主要内容有:

  1、二次函数的概念。考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数,可以化掉二次项的函数,以及二次项系数为零的函数。

  2、求二次函数的解析式。用待定系数法求,设有三种形式,一般形式,分解式,配方式。另外还有根据实际问题求解析式。

  特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少。为了获得最大的利润,应该怎样定价格。这种是典型的二次函数解决实际问题的类型。同样的背景在八年级的时候也有出现,通过一元二次方程解决。

  3、二次函数图像的信息题。根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等。同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零。

  4、抛物线的平移。抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置。所以抛物线的平移的前提条件是二次项的系数不变,规律是”左上加,右下减”。

  5、根据图像来判断一些代数式的符号。主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和—1时的函数值来确定。

  二、成功之处:

  教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和主动性,所以整节课非常流畅,效果不错,目标的达成度较高,可以说本人、学生都较满意。

  三、精彩之处:

  (一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(—1,—6),并且该图象过点p(2,3),求这个二次函数的表达式中,设计了两个问题:

  1、通过已知顶点A的坐标(—1,—6),你从中还能获取什么信息?

  2、在不改变已知条件的前提下,你能选用“一般式”吗?

  设计意图是:

  1、由顶点(—1,—6),可知对称轴是直线x=—1,函数的最大(小)值是—6。从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”。

  2、挖掘顶点坐标的内涵:

  (1)由抛物线的轴对称性,可求出点p(2,3)关于对称轴x=—1对称点p’的坐标是(—4,3);

  (2)用点A、点p和对称轴;

  (3)用点A、点p和顶点的纵坐标等。

  3、得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯。

  (二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。

  内容及问题串如下:

  四、遗憾之处:在课题引入后,由于对学生估计不足,复习一学生独立完成,这本没有错,但是,学生还习惯有老师引着做的方法,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。

  五、反思之处:

  反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;

  反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;

  反思三,教师的经验是宝贵的,一定要开诚不公的交流;

  反思四,工作的责任心是必要的,一定要无私奉献;

  反思五,教师的工作是高尚的,来不的半点虚假。

  总之,教师的教学技艺和水平在每天的工作中慢慢的提高,愿老师们学会反思,它是我们提高的催化剂,更是学生需要的助力器。

《二次函数》教学反思5

  今天讲授二次函数y=ax2+bx+c的图像与性质,首先提供了一系列的情境,使学生体会建立二次函数的重要性,然后以例题的形式通过配方研究具体的一个二次函数y=ax2+bx+c的对称轴和顶点坐标,从而得出它的性质和图象,并进行针对性练习。再由特殊到一般,以例题的形式通过配方推导出二次函数y=ax2+bx+c的对称轴和顶点坐标的公式,再进行针对性练习.

  在完成上述的教学内容后,结合本班级的学生实际,我感觉对学生的学习不能只停留在给定一个二次函数如何用配方法或者是用公式去求这个函数的顶点坐标和对称轴。应该可以对学生提出更高的要求,于是我通过设置游戏进行拔高练习,最后通过设置几个小问题,对整堂课进行总结。

  一一审视这堂课的教学全过程,我带着遗憾带着疲惫,当然更多的是沉甸甸的收获。教学有法,但无定法,贵在得法。教学的最终目的是为了实现教学目标,在所有教学内容的确定,教学情景的`创设及课堂教学结构的安排,通过上课我认为还需更加注重实效,注重我们学生的实际情况,更重要的是注重学生个体差异方面做得还很不够。比如在游戏环节中,抢答的总是好学生,作为差生,可能连思考的机会都失去了。

  教学应该是一个连续的,环环相扣的动态过程,在这节课中,我个人认为在这个内容的连接上,还不够自然。

  新课标指出,数学应源于生活并用于生活,但在这方面我觉得在这堂课中体现得还不够,也许是受到这个教学内容的束缚,因为这是二次函数图象与性质是二次函数的起步阶段,所以很难与生活实际联系。但这也是一个很大的遗憾,还有就是在教学基本功上,我也存在很大不足,特别是在板书方面,不够工整,这些都需在以后的教学中,不断改进的。

  记得有人说过:“教学永远是一门遗憾的艺术。”而教学艺术水平是在不断解决不足和遗憾的过程中得到提升,我相信只有我们的真挚追求,不懈努力,教学业务水平一定会不断提高。

《二次函数》教学反思6

  上完课后失败感比较强。失败感也比平平淡淡的价值大,下面总结一下有何失误。

  本节教学内容是《一次函数与一元二次方程(组)》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标。本节的图象解依据了这个道理。”因此本节需要迅速画出图象,利用图象解决问题。而我的失误也主要发生在画图象上,在喧闹声刚刚平息后在九班开始了这节课。课堂需要的课件无法用内网传递,我只得让学生自己先看书,借机我跑到一楼用软盘把课件拷过来。或许这节课的例题更适合学生独立学习,我对学生疑难处加以点拨,这样学生的主动性会调动起来,昨天看的文章了说注重学生的想法,体会。给学生以充分思考的时间。不过我担心 学生的基础参差不齐,还是以我讲授为主,讲后学生进行训练。在讲的过程中犯了一个画图错误,2X-Y=1化成了 Y=2X+1,并用几何画板作出了图象。这种低级错误竟然我没有看出来,后来学生给我指出来了,有的学生看到老师出错了,低着头嘀嘀咕咕,我对着电脑是否重新画呢,时间不多了然后转入了例3的讲解。

  一个小小的笔误,虽然不是知识性的错误,不能反映老师的教学水平低下,但这种粗心造成的.错误在学生的记忆中留下不光彩的一页,看到个别学生眼中不屑的表情,我忍了忍心里的怒火,不能在课堂上训斥他们,错是自己酿成的。 以后一定注意课堂的细节,借机课下我要强化对学生的细节教育,不要在做题过程中出现我所犯的低级错误。

  关注细节,完善课堂和各个环节,不留遗憾,提高质量

《二次函数》教学反思7

  因教研组活动的安排需要,本周二我作为初四代表出示研讨课,课题为《二次函数的应用——————形如抛物线型》,结合老师的评课反思一下:

  我的设计思路是:前置补偿(确定二次函数解析式的方法和思路)———————探索新知(由前置补偿第四小题过渡到问题一,目的在于体会数学与实际问题的转化,并得出确定实际问题中解析式的关键在于有实际意义得出关键点的坐标;然后过渡到没有坐标系的实际问题中,该怎么处理,有学生探索并分情况展示,然后比较过程与结果,增强优化意识。另一方面由实际问题的解决,体会二次函数应用中的数学思想:第一环节,实际意义—→关键点的坐标—→解析式,注意由实际意义到点的坐标转化时的符号,进一步明确解决问题的第二个环节,解析式—→关键点的坐标—→实际意义,注意由坐标到实际意义转化时要取绝对值。)—————活学活用(解决一个隧道问题,目的加强对思路的理解与体会,从本节课上也提高一下难度,但因时间关系,没有完成)。

  评课整理如下:

  优点:

  思路比较清晰,过渡比较自然,题后反思比较到位。

  缺点:

  1、孙老师:对学生的评价比较模糊,比如有错误的情况下还打个对号。

  2、郭老师:解题步骤需加以规范和总结:一建二设三解四答。

  3、张老师:知识总结有些地方不太到位,比如,三种不同的情况为什么a的取值不变?比较三种的优劣时可以从两个方面进行即确定解析式和解决最后实际问题。这样可以更体会更深刻一些。

  4、付主任:本节课有宽度,但缺乏深度,容量比较小,学案可以在浓缩一下,可以将问题一和问题二结合起来。

  5、齐主任:课堂模式和反映出来的教学理念比较过时,以学生为主体的教育理念体现的不够突出,如果把这节课放在课改之前可能是一堂好课。

  自我反思:

  1、从郭老师、张老师和孙老师的建议中,我应该加强对课的精细化要求,授课态度要严谨,对学生的一点一滴都要负责任,同时对教材知识的挖掘面面俱到,引领学生对知识能有一个更全面更深入的理解。

  2、受付主任建议的启发,可以尝试删掉问题一,由问题二承担起原问题一和问题二的双重作用,即:实际意义确定点的坐标;建立适当的坐标系。可以仍有第四小题引入到问题二(建好坐标系,顶点在原点处),然后实际问题中不可能存在现成的坐标系,引发学生思考坐标系的建立情况,然后加以拓展,并结合解决实际问题体会三种情况的优劣。这样应该可以节省一些时间,但我估计不会太多,最多能节省5分钟,但这或许就可以分析活学活用中的题目了。

  自己的体会是,因为这是第一课时,很多东西不可能面面俱到,知识的理解还需要有个循序渐进的过程(或许这也是一个托辞,这就是我们与名师的差距)。与名师相比,我们的`课堂容量太小,一方面我们平时的课堂对知识中的思想方法挖掘渗透的太少,学生头脑中的知识不系统,形不成知识体系;另一方面,与本人的知识素养有关系,还需要进一步对教材知识进行深入挖掘,对新的教育理念进行学习,只有准备充足了,才能在课堂上游刃有余。

  3、结合齐主任的评课,我站在别人的高度试想了如果是云老师或宋老师来评课,会提出什么意见,我隐约感觉到这肯定不是一节好课,有很大的问题,至于是什么问题我也说不清楚,或许就如齐主任所说的教育理念比较陈腐导致课堂没有推陈出新的亮点,并且我觉得可以做大手术,如果真能请云老师或宋老师来评课的话,我或许就会豁然开朗,而不再这般的迷茫。

《二次函数》教学反思8

  我们已经学习过了正、反比例、一次函数的性质和图像,并且学习过了一元二次方程之后,现在要学习二次函数的图像和性质,从课本和教学大纲的体系来看,二次函数是初中数学的重中重,怎样让学生们学好二次函数?掌握好二次函数的图像和性质?让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的`一般形式,并能初步理解实际问题中对定义域的限制。

  为此我们三年级数学组把李进有李校长请到数学组里,李校长说要想教好二次函数开始时一定要让学生们动手画图,画不同情况的图形,通过画图让学生观察、理解、掌握所学的内容,并能总结出各个图像的相同点和不同点,通过李校长指点,我们在学习y=a(x—h)2的图像和性质时,首先让同学们开始画y=x2 、y=(x—2)2 、和y=(x+2)2 。通过对比,观察发现它们之间是通过y=x2向左或向右平移得到y=(x—2)2 、和y=(x+2)2,但是好多同学对着图形还是不理解加2为什么向左平移??这时我想到李校长说的不要害怕费时间,一定要让同学画图,我又让同学画一组,终于同学们在学习二次函数y=a(x—h)2的图象和二次函数y=ax2的图象的关系时,解决了向左或向右平移引出了加减问题,解决了学生在此容易混淆的难点,让学生结合图象十分明确地看到在x后面如果是加上h就是向左平移h个单位,反之就是向右平移h个单位,其次就是在看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点从标,再看平移的问题。

  通过本节课的讲解我感到要想教好数学,一定要让同学动起了,既能引起学生兴趣,又能对前面所学的二次函数的知识加深印象,适应学生的最近发展区,今后要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。

《二次函数》教学反思9

  二次函数是初中阶段研究的一个具体、重要的函数,在历年来中考题中都占有较大的分值。二次函数不仅和学生前面学习的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想有着重要的作用。而二次函数的概念是后面学习二次函数的基础,在整个教材体系中起着承上启下的作用。

  本节课的内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决实际问题。为此,先让学生复习了函数及一次函数的相关内容,然后设计具体的问题情境让学生自己推导出一个二次函数,并观察、总结它与一次函数的不同,在此基础上逐步归纳出二次函数的一般表达式,最后通过习题巩固二次函数的概念并解决一些简单的数学问题。

  我个人认为,本节课的成功之处是:一是在教学设计上“步步为营”,学生的思维能力“层层提高”。在教学设计上,根据内容的需要,我合理设计具有针对性的问题,借助学生已有的知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。

  二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。

  三是在整个教学过程中,注重不同层次学生的发展,不同的学生的个体差异,再加上受教学目的等因素的.限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。

  不足之处表现在:

  1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。

  2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。

  3、由于时间紧张小结的不够完整。

  总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。

《二次函数》教学反思10

  二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式和它的定义域.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义. 在教学中,我主要遇到了这样几个问题:

  1、关于能够进行整理变为整式的式子形式判断不准,主要是我自身对这个概念把握不是很清楚,通过这节课的教学过程,和各位老师的帮助知道,真正达到了教学相长的效果。

  2、在细节方面我还有很多的不足,比如,在二次函数的表示过程中,应注意强调按自变量的降幂排列进行整理,这类问题在今后的`教学中,我会注意这些方面的教学。

  3、在变式训练的过程中要注意思考容量和密度以及效度的关系,注意教学安排的合理性。另外在教学语言的精炼方面我还有待加强。

《二次函数》教学反思11

  本节的学习内容是在前面学过二次函数的概念和二次函数的图像和性质的基础上,运用图像变换的观点把二次函数的图像经过一定的平移变换,而得到二次函数的图像,二次函数的图像和性质(第三课时)教学反思。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前一节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。

  通过本节课教学,得出几点体会:

  1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。

  2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质,教学反思《二次函数的图像和性质(第三课时)教学反思》。我们可以把研究这些问题的.方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。

  3、要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

  本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,《几何画板》这两种软件制作了课件,特别是《几何画板》软件的应用,画出了标准、动画形式的二次函数的图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。

《二次函数》教学反思12

  昨天我们学习了用函数的观念看一元二次方程,我通过类比引出二次函数与一元二次方程之间的关系,并结合具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

  由于九年级学生已经具备一定的抽象思维能力,再者,在八年级时已经学习了一次函数与一元一次方程的关系,因而,采用类比的方法在学生预习自学的基础上放手让学生大胆地猜想、交流,分组合作,同时设定一定的问题环境来引导学生的探究过程,最后在老师的释疑、归纳、拓展、总结的过程中结束本节课的教学。在知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。本节课的知识障碍,本节课的主要目的在于建立二次函数与一元二次方程之间的.联系,渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。

  总之,在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”这一《新课程标准》的精神,注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得了一定的教学效果,我再次认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与合作学习交流中解决学习中的问题。

《二次函数》教学反思13

  对于二次函数总体复习的时间定为三个课时。

  1、基本知识与性质。

  2、待定系数法。

  3、应用。

  一、本章主要内容有:

  1、概念。考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数;可以化掉二次项的函数;以及二次项系数可能为零的函数。

  2、待定系数法求解析式。设解析式有三种形式,一般形式,双根式,顶点式。另外还有根据实际问题求解析式。特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少。为了获得最大的利润,应该怎样定价格。这种是典型的二次函数解决实际问题的类型。同样的背景在八年级的时候也有出现,通过一元二次方程解决。

  3、图文信息题。根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等。同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零。

  4、抛物线的平移。抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置。所以抛物线的平移的前提条件是二次项的系数不变,规律是“上加下减,左加右减”。

  5、根据图像来判断一些代数式的符号。主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和―1时的函数值来确定。

  二、成功之处:

  (一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(―1,―6),并且该图象过点P(2,3),求这个二次函数的表达式中,设计了两个问题:

  1、通过已知顶点A的坐标(―1,―6),你从中还能获取什么信息?

  2、在不改变已知条件的前提下,你能选用“一般式”吗?

  设计意图是:

  1、由顶点(―1,―6),可知对称轴是直线x=―1,函数的最大(小)值是―6。从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”。

  2、挖掘顶点坐标的内涵:

  (1)由抛物线的.轴对称性,可求出点P(2,3)关于对称轴x=―1对称点P’的坐标是(―4,3);

  (2)用点A、点P和对称轴;

  (3)用点A、点P和顶点的纵坐标等。

  3、得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯。

  (二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。

  三、遗憾之处:

  在课题引入后,由于对学生估计不足,复习中学生还习惯有老师引着做,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。

《二次函数》教学反思14

  教材分析:

  本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。旨在全面掌握所有二次函数的图象和性质的变化情况。同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。

  教学片段:

  本节课我是这样设计引入的。

  [师] y=3x2的图象有何特点?

  [生]很快能说出函数图象以及相关的性质。

  [师]y=3x2+5的图象有何特点? y=3x2+5和y=3x2的图象有何关系?

  此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。当然在前一节课已经让学生明确了y=ax2和y=ax2+c的位置关系。并告诉学生口诀上加下减,位变形不变。

  [师]y=3x2-6x+5的图象与y=3x2有何关系?

  [生]猜想:向上平移5个单位,向左右平移6个单位。

  [师]到底向左还是向右?或者是否就是我们所想的这样先向上平移5个单位,向左右平移6个单位?我们这节课就来研究二次函数y=ax2+bx+c的图象(板书课题)

  教师和学生一起对y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式。

  此处的处理感觉很不自然,但是从y=3x2-6x+5再引出新课这一作法又让我不舍得放弃,希望行家提出好的过渡方法。

  [师]研究y=3(x-1)2+2的图象比较复杂,你准备先研究什么函数的图象?

  [生]可以先研究y=3(x-1)2的图象。

  前面复习过y=ax2和y=ax2+c的位置关系,而且经过课题学习学生已经学会了把复杂问题通过先简单化的这一学习方式。

  让学生完成课本P46的表格。

  在校对答案时我是这样处理的。先让校对3x2的值,然后再填写3(x-1)2的值,但并不是全部校对,在回答到x=-1时,y=12时,停顿。让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的`发现第三排的值刚好是把第二排的值向右平移一个单位。由此猜想当x=0时,y=3。然后引导学生验算。发现刚好相等。继续完成表格的第三排的函数值,发现都有相同的特点。

  此处的设计是要让学生学会观察,从表格里发现函数图象的平移。

  [师]根据表格所提供的坐标,大家去猜想y=3(x-1)2与y=3x2的图象有何关系?

  [生]猜想:把y=3x2图象向右平移一个单位就可以得到y=3(x-1)2的函数图象。

  [师]请大家根据表格所提供的坐标描点、连线,完成y=3(x-1)2的函数图象。看与我们的猜想是否一样。

  通过学生的描点、连线、并观察发现确实符合自己的猜想。经历这样的研究过程学生能形成较为深刻的印象。

  教师进行对比教学。继续研究了y=3(x+1)2与y=3x2的图象位置关系。进而研究他们的图象的性质,然后再研究了y=3(x-1)2+2与y=3x2和y=3(x-1)2三者的联系和区别。总结出口诀上左加下右减,位变形不变便于学生记忆。

  反思:

  函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。

《二次函数》教学反思15

  9月23日,我在九年级三班讲授了二次函数y=ax2+k、y=a(x-h)2的图象和性质。

  先从复习二次函数y=ax2入手,通过检测学生对于二次函数y=ax2的性质掌握较好。然后结合图象让学生理解二次函数y=ax2+k的图象与二次函数y=ax2的图象的关系,通过观察图象学生很容易地理解了二者之间的关系,在做对应练习时效果也较好。

  在学习二次函数y=a(x-h)2的图象和二次函数y=ax2的图象的关系时,由于涉及向左或向右平移引出了加减问题,学生在此容易混淆,尽管让学生结合图象明确地看到在x后面如果是加就是向左平移的,反之就是向右平移,再就是在看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点从标,再看平移的问题。但是还是有一部分同学混淆了。这一部分内容学习得不够理想。反思这一节课整个过程中的成功和不足之处,我觉得需要改进的有如下几点:

  1、灵活处理教材。教材上是一节课学习两种类型的函数,但是根据学生作图的速度和理解能力,一节课完成两种类型的函数有一定的困难。虽然也想过适当处理,但是想到教材是一节课完成两种函数,所以还是决定两种函数在一节课完成,事实证明一节课完成两种函数效果不是很好。由此可见有时教材上的安排不一定是科学的,所以要根据学生的`实际情况进行灵活处理。

  2、认真考虑每一个细节。考虑到一节课上学习两种类型的函数时间有些紧张,所以我让学生提前画好了图象,这样在课堂上可以节省时间,由于默认学生已经画好了图象,所以我也没有在黑板上再画出图象,这样让学生在看图象时,有的学生没有画出,有的同学画错了,这样就给学习新知识带来了困难,这是我没有想到的。所以以后要充分考虑到每一个细节,要想到学生可能会出现什么情况。

  3、小组评价要掌握好度。在课堂上我运用了小组评价,学生回答问题非常积极,可是我感到小组评价还有需要改进的地方。学生回答问题后加分比较耽误时间,在以后的教学中我觉得应该更灵活把握好度,使评价为教学服务而不能因评价而耽误教学。

  我觉得要想提高自己的教学水平,就要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。

【《二次函数》教学反思】相关文章:

二次函数教学反思04-22

二次函数教学反思05-28

《二次函数》教学反思07-15

函数的概念教学反思04-12

反比例函数教学反思03-23

《正比例函数》教学反思02-02

反思自己的教学反思02-06

让教学反思12-15

教学的反思12-11